GCE AS MARKING SCHEME

SUMMER 2019

AS
CHEMISTRY - COMPONENT 1
B410U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

COMPONENT 1: THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS

SUMMER 2019 MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules
All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Marking abbreviations
The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded

cao	$=$	correct answer only
ecf	$=\quad$ error carried forward	
bod	$=\quad$ benefit of doubt	

bod $=$ benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
1				$3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$		1		1		
2			$\begin{aligned} & 28 \mathrm{Si} \\ & 14 \end{aligned}$		1		1			
3	(a)		(molecules are) polar if their atoms have different electronegativities / different tendencies to attract electrons in a bonded pair	1			1			
	(b)		$\begin{array}{ll} & \delta-\delta^{+} \\ \mathrm{F}-\mathrm{F} & \mathrm{~F}-\mathrm{Cl} \end{array}$	1			1			
4			$\left.\begin{array}{llll}\text { Halogen } & \begin{array}{l}\text { chlorine } \\ \text { Use }\end{array} & \begin{array}{l}\text { (water) sterilisation }\end{array} & \text { (1) } \\ \text { both needed }\end{array}\right]$Halide Use$\quad$fluoride in toothpaste / water supply to prevent tooth decay (1)	2			2			
5			any value > 500 but < 1000			1	1			

Section B

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
8	(a)			the Periodic Table has the elements arranged by increasing number of protons (1) the (atomic) masses are due to protons and neutrons (1) in argon there are more atoms with greater number of neutrons (1)			3	3		

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
9	(a)			$X(g) \rightarrow X^{+}(g)+e$ must include state symbols	1			1		
	(b)	(i)	increasing number of protons present (in the nucleus) / greater nuclear charge (1) greater attraction therefore more energy is needed to remove electron (1) ignore references to shielding	2			2			
		(ii)	Group 5 (1) (small) fall to the next element / Group 6 element as a paired electron is being removed (1) do not award explanation mark if incorrect group given		2		2			
		(iii)	Z marked below level of all other points e.g.			1	1			

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(c)	(i)		award (1) for either of following - the number of particles in 1 mol - the number of ${ }^{12} \mathrm{C}$ atoms in 12 g of carbon-12	1			1		
	(ii)	34.23 g is 0.1 mol (1) this has 6.02×10^{22} particles (1) each $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ contains 12 oxygen atoms therefore number of oxygen atoms is 7.22×10^{23} (1)		3		3	3		
		Question 9 total	4	5	1	10	3	0	

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
10	(a)				precipitate of barium sulfate forms with barium chloride (1) none with magnesium chloride as magnesium sulfate is appreciably soluble (1) award (1) for either of following equations $\begin{aligned} & \mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s}) \\ & \mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \end{aligned}$		3		3		3
	(b)			there are 6 bond pairs (1) these repel to maximum separation / minimum repulsion (1) award (1) for 3D diagram to show octahedral structure e.g.	3			3			
	(c)			electrons are excited by electricity (1) promoted to a higher energy level (1) then fall back (to lower level) and give out energy (1) the energy emitted is in the yellow part of the visible spectrum (1)	4			4			
				Question 10 total	7	3	0	10	0	3	

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
11	(a)	(i)		award (1) for four bonding pairs award (1) for octet around all chlorine atoms e.g.		2		2		
		(ii)	$109^{\circ} / 109.5^{\circ}$	1			1			
		(iii)	$\mathrm{SiCl}_{4}(\mathrm{I})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{SiO}_{2}(\mathrm{~s})+4 \mathrm{HCl}(\mathrm{aq})$ award (1) for all formulae correct award (1) for correct balancing and state symbols			2	2		2	
		(iv)	SiCl_{4} is a simple (covalent) molecule (1) SiO_{2} is a giant (covalent) molecule (1) SiCl_{4} has weak intermolecular forces (1) strong covalent bonds need to be broken to melt SiO_{2} (1)	4			4			

COMPONENT 1: THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	5	4	1	10	2	0
8	6	2	4	12	2	0
9	4	5	1	10	3	0
10	7	3	0	10	0	3
11	6	6	5	17	5	4
12	0	7	1	8	5	0
13	4	5	4	13	6	11
Totals	32	32	16	80	23	18

